

AN OVERVIEW OF SOFTWARE DEVELOPMENT MODELS – BASICS HOW TO MANAGE CHANGES FOR SAMD IN THE DEVELOPMENT LIFECYCLE

Tony Yip

Manager of Quality Assurance & Regulatory Affairs, Elekta Far East Region

BEng, MSc (Comp. Sci.), CISA, IRCA Registered QMS Principal Auditor

AHWP 2015 Annual Meeting

Bangkok, 4 Nov 2015

WHAT IS SOFTWARE

WHAT OXFORD DICTIONARY SAID

ENG (UK)	program				Dictionary	
	0				() ×	
		НС				
		Back to main dictionary	<u>v</u>			
		program nou	n			
		BrE /'prəʊgræm	/ ⊲) ;NAmE /'proʊgræm/	4)		
			of instructions in code that contro	of the operations or functions	of a computer	
		 Load the progra 	am into the computer. software noun			
			BrE /'søftweə(r)/ 動 🔅 1	NAmE /'sɔːftwer/ 📣		
			the programs, etc. used to ope	rate a computer		
COCIR JI	RA			中国医疗器械行业协会 China Association for Medical Devices Industry		orea Me oop. As

IEC 62304 DEFINED...

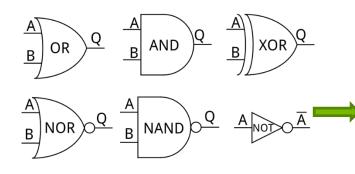
Software Product

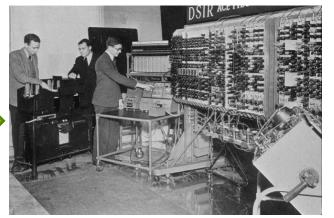
Software Systems

Software Items

Software Units

- Set of computer programs, procedures, and possibly associated documentation and data
- Integrated collection of Software Items organized to accomplish a specific function or set of functions
- > Any identifiable part of computer program
- Software item that is not subdivided into other items





SOFTWARE EVOLVEMENT

Logic Gates -> Programmable Logic Controller (PLC) -> Computing Systems -> Software

Turing Machine, 1937 (Filmed as "The Imitation Game")

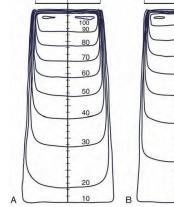
IBM SSEC, 1948

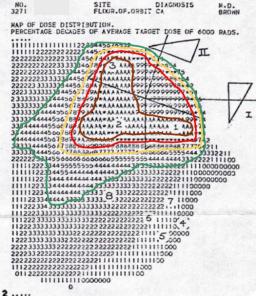
After many years of development...

Extended reading: http://plato.stanford.edu/entries/computing-history/

IRA

Image credit: http://d3l9bzfuzkm13y.cloudfront.net/wp-content/uploads/2015/02/Designed-by-Alan-Turing-the-original-Bombe-computer-took-the-form-of-emulating-several-hundred-Enigma-rotors-2-655x438.jpg ; https://cle.sparkfun.com/assets/3/4/7/5/e/51e5c089ce395f8d16000000.png ; https://tctechcrunch2011.files.wordpress.com/2012/06/app-store-icon.png ; http://www.androidcentral.com/sites/androidcentral.com/files/styles/large/public/topic_images/2014/topic_google_play.png?itok=MrX14PqV





RADIATION THERAPY 1960'S

6.5 x7 805AD á ×Ð ר × ×ø SITE FLOOR OF ORBIT CA. **DIACNOSIS** BROWN RADIOTHERAPIST PREVIOUS THERAPY DATE PRESCRIBED 6000 TOTAL DOSE 33 NO. FRACTIONS TIME, DAYS 44 MACHINE PICKER C-9, 45 500 2

DIAGNOSIS

s Treatment Planning Tools 1960'

1960' s Treatment Planning Service - by Memorial Hospital and M.D. Anderson, USA

160

140 120

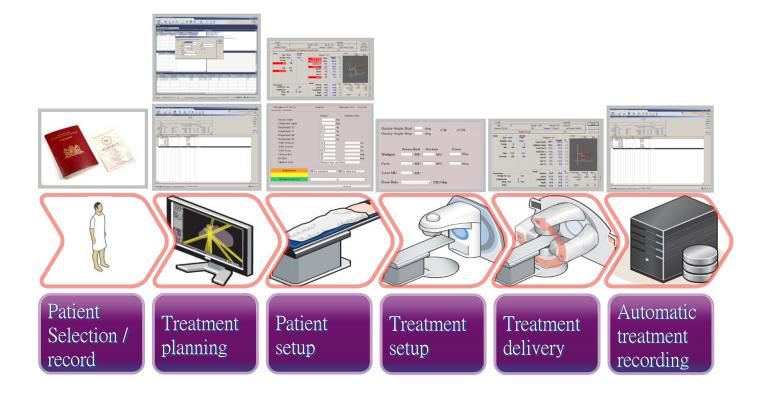
100

80

60

40

20



RADIATION THERAPY NOWADAYS

SOFTWARE ENGINEERING

Manufacturer \Leftrightarrow Developer

SOME REFERENCE TO START

- ISO 15288: System and Software Engineering System Life Cycle Processes (Not specific for Medical Device)
- ISO 12207: System and Software Engineering Software Life Cycle Processes (Not specific for Medical Device)
- ISO/IEC TR 19759: Software Engineering Guide to the software engineering body of knowledge (SWEBOK) (Not specific for Medical Device)
- Medical Device SaMD SDLC IEC 62304
- Health Software SDLC IEC 82304 (coming)

SYSTEM & SOFTWARE LIFE CYCLE PROCESS

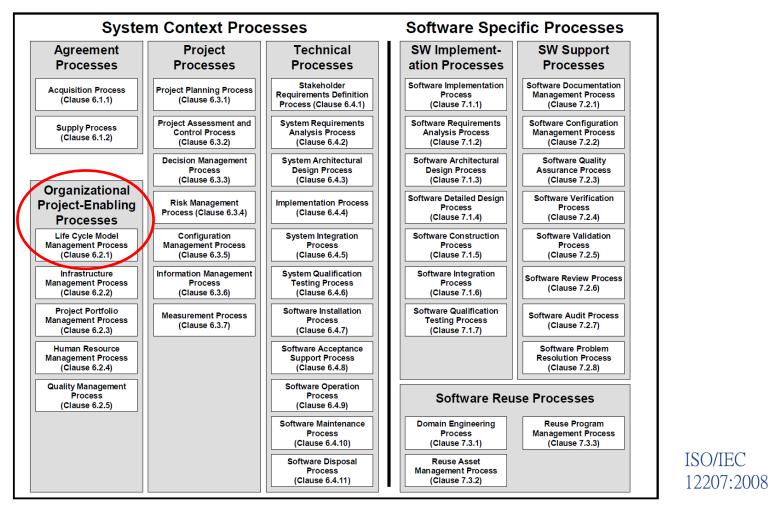


Figure 1 — Life Cycle Process groups

LIFE CYCLE MODEL

✓ Framework of <u>processes</u> and <u>activities</u> concerned with the life cycle that may be organized into stages, which also acts as a common reference for communication and understanding

ISO/IEC 12207 Definition

Life Cycle Model does not specify what document needs to be generated in different stages, but process & activity standard like IEC 62304, ISO/IEC 15288, ISO/IEC 12207 does

Introduction Section:

 This standard does not prescribe a specific life cycle model. The users of this standard are responsible for selecting a life cycle model for the software project and for mapping the PROCESSES, ACTIVITIES, and TASKS in this standard onto that model.

IEC 62304

<u>Annex B</u>

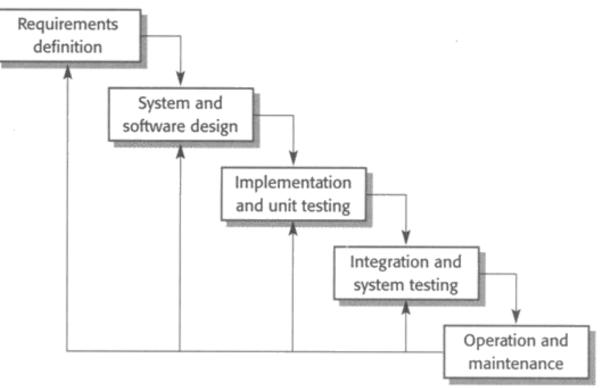
Table B.1 – Development (model) strategies as defined in ISO/IEC 12207

Development Strategy	Define all requirements first?	Multiple development cycles?	Distribute interim software?	
Waterfall (Once-through)	yes	no	no	
Incremental (Preplanned product improvement)	yes	yes	maybe	
Evolutionary	no	yes	yes	

obim

SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC) - MODELS

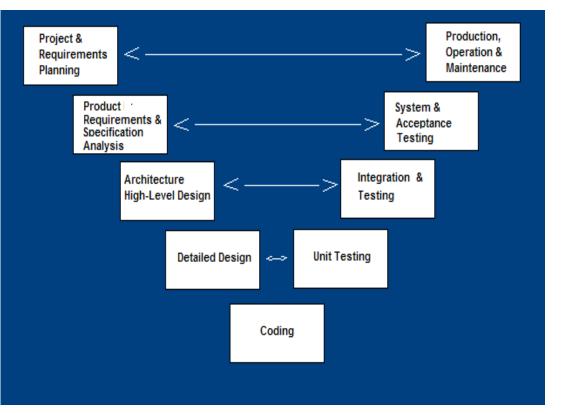
- 1. Waterfall
 - i. V-shaped
- 2. Incremental Development
- 3. Evolutionary development
- 4. Other: Spiral Model, Traditional SDLC etc



WATERFALL MODEL

The "once-through" strategy, also called "waterfall", consists of performing the development PROCESS a single time. Simplistically: determine customer needs, define requirements, design the SYSTEM, implement the system, test, fix and deliver.

HRA



V-SHAPE SDLC MODEL

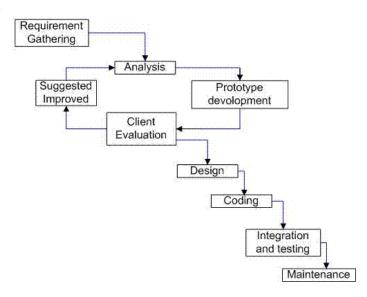
- A variant of the Waterfall that emphasizes the verification and validation of the product.
- Testing of the product is planned <u>in parallel</u> with a corresponding phase of development

Content credit: Dr. Kirstie Hawkey, Dalhousie University

INCREMENTAL DEVELOPMENT MODEL

 Design Develop Implement						
 						Client feedb
Des	sign	Develop	Imple	ment		Build 2
 						Client feedb
 		De	sign	Develop	Implement	Build 3

The "incremental" strategy determines customer needs and defines the SYSTEM requirements, then performs the rest of the development in a sequence of builds. The first build incorporates <u>part of the planned capabilities</u>, the next build adds more capabilities, and so on, until the SYSTEM is complete.


Image credit: High Level Models and Methodologies for Information Systems, P. Isaias and T. Issa, DOI 10.1007/978-1-4614-9254-2_2, Springer Science+Business Media New York 2015

MEDEC

EVOLUTIONARY PROTOTYPE MODEL

Evolutionary Prototyping Model

The "evolutionary" strategy also develops a SYSTEM in builds but differs from the incremental strategy in acknowledging that the <u>user need is not fully understood</u> and <u>all</u> requirements cannot be defined up front. In this strategy, customer needs and SYSTEM requirements are partially defined up front, then are refined in each succeeding build.

Image credit: https://melsatar.files.wordpress.com/2012/03/ev-proto.png

SPIRAL MODEL

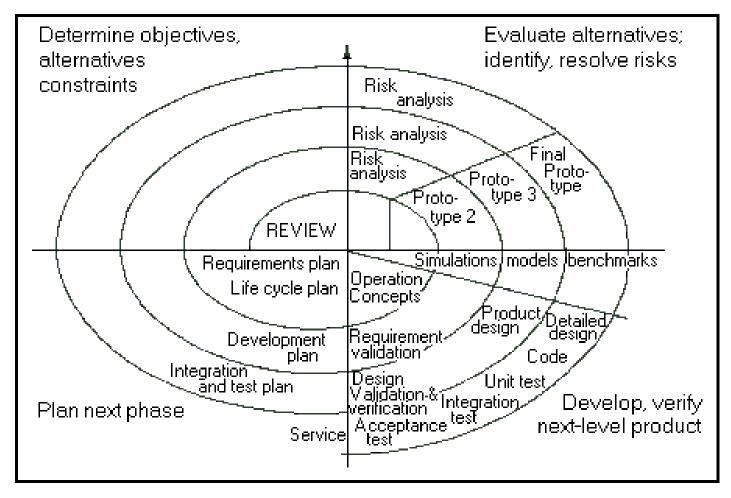


Image credit: IBM

ІТ/ІС

SOFTWARE ENGINEERING VS TRADITIONAL MD MANUFACTURING

IMDRF/SaMD WG (PD1)/N23R3: Software as a Medical Device (SaMD): Application of Quality Management System

Adopted of SDLC Process & activities into medical device manufacturing QMS

7.0	MANAGING SAMD LIFECYCLE PROCESSES	11
7.1	PRODUCT PLANNING	
7.2	RISK MANAGEMENT: A PATIENT SAFETY FOCUSED PROCESS	
7.3	DOCUMENT CONTROL AND RECORDS	13
7.4	CONFIGURATION MANAGEMENT AND CONTROL.	14
7.5	MEASUREMENT, ANALYSIS AND IMPROVEMENT OF PROCESSES AND PRODUCT	14
7.6	MANAGING OUTSOURCED PROCESSES AND PRODUCTS	15
<u>8.0</u>	SAMD LIFECYCLE ACTIVITIES	17
<u>8.0</u> 8.1		
	REQUIREMENTS	17 19
8.1 8.2 8.3	REQUIREMENTS DESIGN DEVELOPMENT	17 19 20
8.1 8.2 8.3	REQUIREMENTS Design Development Verification and Validation	17 19 20 21
8.1 8.2 8.3	REQUIREMENTS DESIGN DEVELOPMENT	17 19 20 21
8.1 8.2 8.3 8.4	REQUIREMENTS Design Development Verification and Validation	17 19 20 21 22

WHAT IS GENERATED DURING DIFFERENT STAGES OF SOFTWARE DEVELOPMENT

US FDA Guidance	Related SDLC Stages
Level of Concern	Requirement Stage
Software Description	Requirement Stage
Device Hazard Analysis	Requirement, Design
Software Requirement Specifications (SRS)	Requirement Stage
Architecture Design Chart	Design Stage
Software Design Specification (SDS)	Design Stage
Traceability Analysis	Development Stage
Software Development Environment Description	Development Stage
Verification & Validation Documentation	V&V Stage
Revision level History	Deployment Stage
Unresolved Anomalies (Bugs or Defects)	Deployment, Maintenance Stage

JIRA

ITAC

Kmdica

ea Medical Devices Indu

1947: FIRST COMPUTER "BUG"

Engineers working on the Mark II computer at Harvard University found a moth stuck in one of the relays. They taped the insect in their logbook. The words "bug" and "debug" soon became a standard part of the language of computer programmers.

Relay #70 Panel (moth) in relay. First actual case of buy being found.

SOFTWARE CHANGE

What can cause a software change:

- ✓ Bug fix
- ✓ New feature
- Adding fail safe / alarm function to prevent misuse
- ✓ User Experience Improvement
- ✓ Not really a bug, but minor improvement
- ✓ Adding new Indication for Use
- ✓ Adding Intended Use to existing software ...etc

MEDEC

DOCUMENT AFFECTED DURING SOFTWARE CHANGE

abime

- There is no golden rule to confirm what documents will be changed.
- Change is unpredictable as IT environment, technology and user needs change rapidly.
- Some of the regulatory review nowadays cover all/most of the development process & activities documents for particular software, and sometimes even down to code level review.
 - Equivalent to Full Manufacturing Audit/Inspection for particular medical device in traditional medical device manufacturing
 - Imagine the only manufacturing equipment for software developer (manufacturer) are Macbooks or Laptops, working in Coffee shop

QUESTION: HOW TO REGULATE THEIR DEVELOPMENT

And new medical device created after few cups of coffee!

Image Credit: https://educationfutures.com/2008/knowmads-in-society-30/

JIRA

QUESTION TO THINK ABOUT: CALCULATOR TO CALCULATOR PROGRAM

Image credit: http://www.edtechmagazine.com/k12/article/2012/11/calculating-firsts-visual-history-calculators ; http://timerime.com/user_files/50/50011/media/800.jpg?t=1296496689

THANK YOU!

