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View the Invisible, Know the Unknown

We deliver an Al-based diagnostic platform that can support physicians to make more accurate diagnoses
and democratize the quality of care in a more quantitative and objective manner.
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Sound scientific evidence

)
‘,h& AMERICAN ACADEMY

%w OF OPHTHALMOLOGY ®

Development and Validation of Deep
Learning Models for Screening Multiple
Abnormal Findings in Retinal Fundus Images

O

Jaemin Son, MSc,"* Joo Young Shin, MD, MSc,”* Hoon Dong Kim, MD, MSe,” Kyu-Hwan Jung, PhD,"
Kyu Hyung Park, MD, PhD,” Sang Jun Park, MD, MSc*

Purpose: To develop and evaluate deep learning models that screen multiple abnormal findings in retinal
fundus images.

Design: Cross-sectional study.

Participants: For the development and testing of deep learning models, 309 786 readings from 103 262
images were used. Two additional external datasets (the Indian Diabetic Retinopathy Image Dataset and
e-ophtha) were used for testing. A third external dataset (Messidor) was used for comparison of the models with
human experts.

pathy P 0
demonstrated a performance that rivaled that of human experts, especially in the detectlon of hemorrhage hard
exudate, membrane, macular hole, myelinated nerve fiber, and glaucomatous disc change.

Conclusions: Our deep learning algorithms with region guidance showed reliable performance for detection
of multiple findings in macula-centered retinal fundus images. These interpretable, as well as reliable, classifi-
cation outputs open the possibility for clinical use as an automated screening system for retinal fundus
images. Ophthalmology 2019;m:1—10 © 2019 by the American Academy of Ophthalmology. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Supplemental material available at www.aaojournal.org.

Macula-centered retinal fundus images may be used for
screening potential vision-threatening conditions, including
diabetic retinopathy (DR),' ™ age-related macular degener-
ation (AMD), and glaucoma.” To maximize accessibility
and mitigate cost, automatic algorithms have been
developed in the past decade to slu.uulmc the process for
the diagnosis of DR™® and glaucoma.””” Recently, deep
neural networks' have revolutionized the field of medical
image analysis, and the diagnoses of DR, AMD, and
possible glaucoma with these deep leamning algorithms
have demonstrated discriminative abilities comparable
with those of ophthalmologists.''~*° However, because a
diverse spectrum of abnormal findings and diseases can be

found on fundus examination, a deep learning alg
identifies multiple disease conditions may be mo
clinical application. Also, these deep learning alg
not reveal how the decisions are made for the
limiting interpretation of the outputs of these algc
discouraging potential clinical use. Ophthalmol
ally determine diagnoses in retinal fundus

observing certain findings (e.g.. hemorrhage
cotton-wool patches, etc.) that are associated
with the diagnosis (e.g.. DR, glaucoma, etc.). Th
process is not embedded explicitly in deep lea
rithms that are trained in an end-to-end manner (0 ©
outputs regarding diagnoses directly from an input image.

https://doi.org/10.1016/j.0phtha.2019.05.029 1
ISSN 0161-6420/19

© 2019 by the American Academy of Ophthaimology
This is an open access article under the CC BY-NC-ND license
(nttp://creativecommons.org/licenses/bync-nd/4.0/). Published by Elsevier Inc.

Pediatric Imaging * Original Research

Computerized Bone Age
Estimation Using Deep Learning—
Based Program: Evaluation of the
Accuracy and Efficiency

Jeong Rye Kim!
Woo Hyun Shim!
Hee Mang Yoon'
Sang Hyup Hong!
Jin Seong Lee!
Young Ah Cho!
Sangki Kim?

OBJECTIVE. The purpose of this study is to evaluate the accuracy and efficiency of a
new automatic software system for bone age assessment and to validate its feasibility in clini-
cal practice.

MATERIALS AND METHODS. A Greulich-Pyle method-based deep-learning tech-
nique was used to develop the automatic software system for bone age determination. Using
this software, bone age was estimated from left-hand radiographs of 200 patients (3-17 years
old) using first-rank bone age (software only). computer-assisted bone age (two radiologists
with software assistance). and Grenlich-Pvle atlas—assisted bone ace (two radioloeists with

American Journal of Roentgenology
Diagnostic Imaging and Related Sciences

DOI:10.2214/AJR.17.18224

J.R.Kim and W. H. Shim contributed equally to this work.

Received March 12,2017; accepted after revision
July7,2017.

s.Kimis employed by Vuno, Inc., which created the deep
learning-based automatic software system for bone
age determination. J. R. Kim, W. H. Shim, H. M. Yoon,
S.H.Hong, J.S. Lee, and Y. A. Cho are employed by
Asan Medical Center, which holds patent rights for the
deeplearning-based automatic software system for

©American Roentgen Ray Society

AJR:209, December 2017

tions and appeared to enhance efficiency by reducing reading times without compromising

the diagnostic accuracy.

one age estimation is crucial for
developmental status determina-
tions and ultimate height predic-
tions in the pediatric population,
particularly for patients with growth disor-
ders and endocrine abnormalities [1]. Two

major left-hand wrist radiograph-based
methods for bone age estimation are current-

depends on the radiologist’s experience and

tends to be subjective.

Since 1992, concerns regarding interob-
server variability in manual bone age esti-
mation [4] have led to the establishment of
several automatic computerized methods for
bone age estimation, including computer-as-
sisted skeletal age scores, computer-aided
skeletal maturation assessment systems, and
BoneXpert (Visiana) [5-14]. BoneXpert was

And a recently accepted article in

levels of abstraction and improved predic-

tions from data. Deep-learning techniques

INAL RESEARCH

Hearl‘ troke
Association | Association.

An Algorithm Based on Deep Learning for Predicting In-Hospital
Cardiac Arrest

Joon-myoung Kwon, MD;* Youngnam Lee, MS;* Yeha Lee, PhD; Seungwoo Lee, BS; Jinsik Park, MD, PhD

Background—In-hospital cardiac arrest is a major burden to public health, which affects patient safety. Although traditional track-
and-trigger systems are used to predict cardiac arrest early, they have limitations, with low sensitivity and high false-alarm rates.
We propose a deep learning-based early warmning system that shows higher performance than the existing track-and-trigger
systems.

Methods and Results—This retrospective cohort study reviewed patients who were admitted to 2 hospitals from June 2010 to July
2017. A total of 52 131 patients were included. Specifically, a recurrent neural network was trained using data from June 2010 to
January 2017. The result was tested using the data from February to July 2017. The primary outcome was cardiac arrest, and the
secondary outcome was death without attempted resuscitation. As comparative measures, we used the area under the receiver
operating characteristic curve (AUROC), the area under the precision-recall curve (AUPRC), and the net reclassification index.
Furthermore. we evaluated sensitivitv while varving the number of alarms. The deep learning-based earlv waming svstem (AUROC:

JAHA

Journal of the American Heart Association

n-hospital cardiac arrest is a major burden to public health,

which affects patient safety.™® More than a half of cardiac
arrests result from respiratory failure or hypovolemic shock,
and 80% of patients with cardiac arrest show signs of
deterioration in the 8 hours before cardiac arrest.*~* However,
209 000 in-hospital cardiac arrests occur in the United States
each year, and the survival discharge rate for patients with
cardiac arrest is <20% worldwide.'®" " Rapid response systems
(RRSs) have been introduced in many hospitals to detect
cardiac arrest using the track-and-trigger system (TFS).‘Z"3

Two types of TTS are used in RRSs. For the single-parameter

European
Radiolog

commercial purposes

range.M The aggregated weighted TTS calculates a weighted
score for each vital sign and then finds patients with cardiac
arrest based on the sum of these scores.'® The modified early
waming score (MEWS) is one of the most widely used
approaches among all aggregated weighted TTSs (Table 1)'%;
however, traditional TTSs including MEWS have limitations, with
low sensitivity or high false-alarm rates.*">'7 Sensitivity and
false-alarm rate interact: Increased sensitivity creates higher
false-alarm rates and vice versa.

Current RRSs suffer from low sensitivity or a high false-
alarm rate. An RRS was used for only 30% of patients before
2 care unit admission and was not used for
s, even if they met the criteria.'®'®

o, Korea; VUNO, Seoul, Korea (Youngnam L., Yeha L.,

20, Gyeyangmunhwa-ro, Gyeyang-gu, Incheon 21080,

cess article under the terms of the Creative Commons
1 the original work is properly cited and is not used for

DOi: 10.1161/JAHA.118.008678

Journal of the American Heart Association 1
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First Al device in Korea
Automates bone age
assessment of children
Supports doctors to
assess skeletal maturity
Reduces reading time

Improves accuracy



5/2 SeWICe Recent product approval: Before approval <)
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Before VUNO Med® - BoneAge With VUNO Med® - BoneAge

l 1
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.. v Serv'ce Recent product approval: Approval timeline for 3 years

2016
Jan

GMP documentation First TCF Product Classification Performance Test KGMP Certification
Product Prototype (Processing period: 10 D) Completion

May Jun Nov Dec

2017
AEr Jun Jul Sep Oct to Dec Dec

Site, PI Site, Vendor Protocol Submission Protocol Study Conduction  Study Completion
Selection Contract Processing period: 30 D Approval Database Lock

2018
Jan Feb AEr May Jun to Nov Nov

Clinical Study New Device Business Product Approval ISO 13485:2016 ISO 13485:2016
Report Application License Health Insurance Review preparation Certification
Processing period: 80 D Processing period: 30 D CE Marking




=) SerV|Ce Recent product approval: Voice of customers

Corrective/preventive actions from customer feedback

“I'd like to pay per case.” ) % Provide cloud-based service model
“| like the report, and my patients like report.” )= Make better report
“It's better than me.” ) ™% Expand training set, upgrade performance

“It's not like me.” ==) Expand training set, upgrade performance

“Why two hands images don’t work?” ) =8 Make CAD find one hand

And more importantly...

Quality management activities
Including software version control, training dataset management




~2. Service Recent product approval: So what now

VUNO Med® — BoneAge is ACTIVELY, clinically used by = 50 hospitals,
for 2 thousands of children in Korea.

Standalone Package Cloud Service Integrated Engine
-Direct sales with own - Easy access - Integrated with PACS

viewer, mainly used in - Pay per diagnosis (First - SaaS based model for

tertiary hospitals and only in Korea) PACS companies
-Hospital-level adoption for - High repeat purchase rate - Research-friendly

newly formed hospitals - Actively using in real world



Ki. Serwce Recent product approval: In 2019

VUNO Med® — Chest X-ray

Reference Standard Prediction




"(é SerVICe Recent product approval: In 2019
. .

VUNO Med® - DeepBrain

Reference Standard Prediction
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(. Reliable Ministry of Government legislation
.{-'F NATIONAL LAW INFORMATION CENTER

=9 gm QIS 2I218 (A= 2019, 7 1] [ HI15270E, 2017, 12, 19, YENE] (=2 a0y | | Bs

Medical Device Act
-5 A S IE ME (A 2019, 7 1,] [HEZE M29158=, 2018, 9, 11, YEMHE]
GO (NEFE S BN MR [AE 2019 10, 22] [£2)% HI567E, 2019, 10, 22, L2HE]  * . .
B G EAY MFDS Notifications:

B EE (MESENTH) 2RI HINY BT ST S SHSYH e 3E AR 2017, 11, 28] [DAl M2017-88%, 2017, 11,

TN ESEUE L SSEUSIT WEIF AAN B IIE AR 2006 3, 91 (DA H20I6-26%, 2006, 3. 9. LEWE] = ReQUIation on MediCal DeViCG Appr0V3| ]
) A 1AM R BIZIZIE (AR 2018, 11, 21,7 [T H2018-932, 2018, 11, 21, 2EHE] Report ) ReVieW EtC
)

(2] A AHIFFEIDIZA Y SEH B AE [NE 2017, 5 241 (DA M2017-46%, 2017, 5, 24, MIE]

- [E] B EID JEEMLMNB AR L 2 SH 2E AT LAE 2017, 5, 1] [DA H20T-31Z, 2017 5, 1, 2EHE] - Korea Good ManUfaCtU rl ng PraCtlceS

2 EA ZBDD A EAE TAE 2018, 7191 [DA M2MS-61E, 209, 7 19, 2ENE]

B BN 2B SRS S O A B RN BEt 3E (AR 2019 7 5] (DA B2019-56E. 2019, 7, 5., LEME] - Standal’ds and SpeCiﬁcationS
[ A SIS A D AEaT AR AT BTN B IR (AR 2017, 12,271 (DA H207-1102, 2017, 12, 27, LEHE] . .
- Korea Good Clinical Practices

v

When applied to VUNO Med Solutions Attached table from MFDS Notification

1 2 3 4-A 4-B 4-C 4-D 4-E 4-F 4-G 5 6 7
Product category C?r?lzzrésnon Purpose rllvilser(r:lh:f Electricity | Radiation rrfa:e(r:lgtci’c Biological Perfor Physical Safet Clinical Dlsz(f)ver Fl:)srgiinn
A. Different purpose of use e} X (o) A (o) X 0 X X (o) (0] (0]
1. Novel |B. Different mechanism of action X 0 0 A 0] X 0] X X (0]

C. Different raw materials X X X X X X

D. Different performance 0 X X X X X X (0] X X A X X

2. Enhanced | E. Different test specification X X 0] A 0] X X X X X X X
F. Different method of use X X X ZAN 0 0

3. Equivalent X X X X X X
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Ministry of Food and
Drug Safety

G

HA 1407, HAHHO[Z] 1/14
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NIDS 222717124082

Mational Instiute of Medioal Devics Safoty formation

Software as a Medical Device (SAMD): Software as a Medical Device (SAMD): Clinical

_ o e . Evaluation — Guidance for Industry and
LZEH 0] Clinical Evaluation Food and Drug Administration Staff

T@gC ZEH =22 Hom HAH Gl 2 ol
ESIE 55T 2/ 0322 M 5k 5 SlsULt 3 This anidi P P -
gnidance represents the current thinking of the Food and Drug Administration (FDA or
Guldance for InduStry and Agency) on this topic. It does not establish any rights for any person and is not binding on
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k-2 =3 = L]
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EER A & NYF FH FDA HFA £ AR FA B,
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After device approval

New Device A | Treatment Treatment
Application pprova . with Al without Al

‘ MFDS device device

, - 4414_/, — -

Existing Tech

Review Presence of

Existing Technology Non-existing Tech

‘ HIRA
New Health Early/research stage
Technology <
Assessment New Health Tech
NECA l

Add in Insurance Coverage List
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Strong R&D partnership
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KANGBUK
SAMSUNG HOSPTTAL

SNUH } SEOUL NATIONAL UNIVERSITY
BUNDANG HOSPITAL

(83} YONSEI UNIVERSITY HEALTH SYSTEM
o KOREA

UMIVERSITY
ANAM HOSPITAL

THE CATHOLIC UNIVERSITY OF KOREA

-‘l‘? : e
= SEOUL ST. MARY'S HOSPITAL

= SEJONG ({215} EWHA WOMANS UNIVERSITY
JOtd HOSPITALGROUP () MEDICALCENTER

<> GCPharma =Z=Y4E & + a

NATIONAL CANCER CENTER

R & D partner
local/international institutions

2YUME]

NATIONAL CANCER CENTER

KANGBUK
SAMSUNG HOSPITAL

SNUHY

/

Partners for Ongoing
Clinical Trials

" ASAN
w/ Medical Center

o4 e
-

SEOUL NATIONAL UNIVERSITY
BUNDANG HOSPITAL
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Upcoming product 16
MFDS MFDS Market
Development Initiation Clinical Study Authorization Access
O .. e o 6 o
Fundus Al BoneAge BoneAge
Retinal lesions Bone age CE Marked
estimation PMDA initiation
LungCT Al Chest X-ray DeepBrain
Pulmonary Chest x-ray CE initiation
nodules screenin
Working hard! .
DeepBrain Chest X-ray/

Brain MR image
quantification

Fundus Al/
LungCT Al
CE initiation
FDA/PMDA
preparation



Al Software in Korea: A lot more in near future
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Medical Image Analysis SW
Computer-aided diagnosis SW
Computer-aided detection SW
Medical Image Analysis SW
Computer-aided diagnosis SW
Computer-aided detection SW
Computer-aided detection SW

Medical Image Analysis SW

Computer-aided detection SW
Medical Image Analysis SW

Computer-aided detection SW

Computer-aided diagnosis SW

NN WDMNDMNDWDN

Bone age estimation

Brain infarction

Pulmonary nodule

Brain MR image quantification
Breast cancer

Chest radiography screening
Lumbar compression fracture
Chest CT image quantification
Colonoscopy image quantification
Gastroscopy image quantification
Chest radiography screening
Bone age estimation

Pulmonary nodule

Major pulmonary diseases
Fundus photograph screening
Prostate cancer

Fundus photograph diagnosis
Cerebral aneurysm

Cerebral hemorrhage

Glaucoma

Approved
Approved
Approved
Certified
Approved
Approved
Approved
Certified
Certified
Certified
Approved

2018-05-16
2018-08-14
2018-08-14
2019-06-24
2019-07-29
2019-08-20
2019-08-20
2019-10-02
2019-10-04
2019-10-04
2019-10-21

Clinical study ongoing
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